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ABSTRACT: In this paper we discuss the formulation and
the analysis of a signaling pathway by Petri nets. In order
to explicitly and formally describe the molecular mechanisms
and pathological characteristics of signaling pathways, we
propose a new modeling method to construct signaling path-
ways on the basis of formal representation of Petri net. Our
proposed extended algorithm effectively finds basic enzymic
components of signaling pathways by employing T–invariants
of Petri nets with considering the origination leading to an oc-
currence of inhibition functions than existing methods. An ap-
plication of the proposed algorithm is given with the example
of Interleukin-1 and Interleukin-6 signaling pathways.

1 INTRODUCTION

Signaling pathways have been widely studied in cell biol-
ogy. They are information cascades of enzyme reactions from
transmembrane receptors to the nucleus DNA, which ulti-
mately regulate intracellular responses such as programmed
cellular proliferation, gene expression, differentiation, secre-
tion and apoptosis. Up to now, the formulation and analy-
sis of biological networks have been investigated from quan-
titative and qualitative aspects [1, 2, 3, 4] by using various
types of Petri nets such as stochastic Petri nets [5, 6], hybrid
Petri nets [7, 8] and coloured Petri nets [9]. By using qualita-
tive method, the researchers could gain immense important in-
sights into the behaviors of the models, even in the absence of
quantitative data, at a relatively low cost in terms of effort and
high degree computational time. The analysis of even large
scale and complex networks can be handled with the same set
of simple structural and behavioral properties defined by Petri
nets.

Today much research of modeling and analyzing metabolic
pathways in qualitative term has been developed from the first
paper by Reddy et al. [2] in 1993. In the meantime, since
the signaling pathways are actually extremely complex as we
know, a bit of investigation of relationships among complex
molecular mechanisms and interactions in signaling pathways
have been provided. Heiner et al. [3] have proposed a method
for developing and analyzing models of biological pathways
in systematic manner by calculating the T–invariants to ob-
tain all paths in signaling pathways. However, their method is

not sufficient to discuss the general systematic behavior, since
they did not take the effect of enzymes into account. There-
fore, we have proposed a new method of formulating and an-
alyzing a signaling pathway with a focus on enzymes by ap-
plying Petri nets, which provide all the chains consisting of
enzymic reaction elements in signaling pathways [10].

Inhibition functions are essential for biological systems,
and there are numerous recent reports on signaling pathways
in which inhibition functions play important roles [11]. Cur-
rently it is still hard to model and analyze signaling path-
ways including inhibition functions with the existing model-
ing methods. Therefore, in this paper we are to improve our
proposed method to handle inhibition functions in signaling
pathways. Our proposed method would give a fresh insight
into medical treatment and support any drug therapies.

2 BASIC STRUCTURAL PATTERNS

Petri nets are powerful tools in modeling various concurrent
systems and the theories have been widely applied to inquiring
systems’ behaviors [12]. In this section, we give the necessary
definitions used in this paper as follows:
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Figure 1: An enzyme place in Petri net model.

[Definition 1] A Petri net is denoted as PN= (T,P,E,α,β)
which is a bipartite graph [12], where E=E+∪E− and

T: a set of transitions {t1, t2, · · · , t|T|}
P: a set of place {p1, p2, · · · , p|P|}
E+: a set of edges from transitions to places e=(t, p)
E−: a set of edges from places to transitions e=(p, t)
α: α(e) is the weight of edge e=(p, t)
β: β(e) is the weight of edge e=(t, p). �

[Definition 2]

(1) ◦t (or t◦) is a set of the input (or output) places of t and
called the pre-set(or post-set) of transition t.
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Figure 2: Petri net models of various reaction types in signaling pathways.

(2) The structure of a Petri net PN can be represented by
a matrix, called place–transition incidence matrix(inci-
dence matrixfor short) C=C+−C−, where:

C+(i, j)=
{

βe if e=(t j , pi)∈E+

0 otherwise

C−(i, j)=
{

αe if e=(pi , t j)∈E−
0 otherwise

(3) Token distribution to places is called marking and ex-
pressed by M=(m1,m2, · · · ,m|P|)t , where, mi is the num-
ber of tokens at pi .

(4) A transition sequence σ=t1t2 · · · tk is called firing se-
quencefrom MI to MF , if the firing simulation of σ on
MI can be carried out all the way to the last element of
σ, which leads to the marking MF . The marking tran-
sition is expressed by MI [σ>MF and the firing numbers
of all the transitions are expressed by a firing count vec-
tor J=( j1, j2, · · · , j|T|)t . The relationship among C, J, MI

and MF can be expressed by MF=MI+CJ. �

[Definition 3]

(1) A non-negative integer vector J satisfying CJ=0 is called
T-invariantand the set of transitions TJ={ti∈T| ji �=0} is
called the supportof J.

(2) For a T-invariant J with the support TJ, if there exists
no such T-invariant J′ whose support TJ′ satisfies TJ′⊂TJ,
then TJ is called minimum support. Further for a T-
invariant J with minimum support TJ, if all the values
{ ji |ti∈TJ} have no common divisor then J is called ele-
mentary T-invariant.

(3) A subnet N is called “generated by a set of transition TJ”
if N is such a subnet that N is composed of all the tran-
sitions t included in TJ and all the places included in the
pre-set and post-set of any t∈TJ.

(4) An inhibitor arc which is depicted as a line with a hollow
circle at the end where the arrowhead normally appears,
represents the function of inhibition. An inhibitor arc dis-
ables a transition to fire if the upstream place is occupied
by a token, but does not consume the token. �

We give a new modeling method for formulating signaling
pathways to Petri net models that can be naturally modeled
according to the following rules:

(1) Places denote static elements including chemical com-
pounds, conditions, states and substance participating in
the biological systems. Tokens indicate the presence of
these elements.

(2) Transitions denote active elements including chemical



reactions, events, actions, conversions and catalyzed re-
actions. Arc weight is omitted when its weight is 1.

(3) Since an enzyme itself plays a role of catalyzer in bio-
logical system and there occurs no consumption in bio-
chemical reactions, an enzyme is modeled by an enzyme
place as to be defined in Definition 4 in the following.

(4) An inhibition function existing in biological system is
modeled by an inhibition arc directly affecting transition
sequence σ.

In this paper, an enzyme place is defined as follows:

[Definition 4]
(i) An enzyme in biological system is modeled by a place

(called an enzyme placehereafter) with such a self-loop
(refer to Fig.1) that once an enzyme place is occupied by
a token, the token will return to the same place again,
keeping the firable state.

(ii) Let pi is an enzyme place, ts denotes a transition in a
self-loop of pi , td denotes a sink output transition of pi

implying an extremely small natural degradation in bio-
logical system. The sets of pi , ts and td in PN are denoted
by Pe, Ts and Td, respectively. Here we give a formal def-
inition of the set Pe;
Pe={pi |∃t, td,s.t. pi∈◦t∩t◦, t◦d=φ, pi=◦td, |e(tp, pi)|=1,

pi=◦ts=t◦s , |ts|=1,t∈T, tp∈Tp, td∈Td,α(pi , td)	1}. �

Numerous types of molecular interactions can be clearly de-
scribed by Petri net model [13], which suffices to give the de-
scription of the metabolic pathway presently [2]. For signaling
pathways, as is pointed out in [14], the additional information
among the molecular interactions also should be extraordinar-
ily distinguished according to different types of interactions.
As to explicitly understand the structural complicated signal-
ing pathways, the formulation of each essential molecular in-
teraction in a signaling pathway by using Petri net is the first
step in modeling the network of signaling pathways as a qual-
itative event system. The molecular mechanisms and inter-
actions existing in signaling pathways (left side of dot-line)
and corresponding Petri net graph (right side of dot-line) are
shown in Fig.2. From all the models illustrated in Fig.2, we
extracted just four basic structural patterns with which any re-
action types existing in signaling pathways can be represented
(see Fig.3). On the basis of this interpretation, it provides us
a basic platform to describe and analyze the properties and
behaviors of signaling pathways.
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Figure 3: Four basic structural patterns extracted from Fig.2
for modeling signaling pathways.

In the next section, we give an extended general algorithm
including inhibitory interactions, and analyze the behavioral
properties of the Petri net model to obtain functional qualities
of the biological system.

3 MODELING SIGNALING PATHWAYS

3.1 Enzymic reaction and T-invariant

Signaling pathway is the chain of intracellular signaling events
which starts by attaching ligands at receptors and ends by al-
tering target proteins, which are responsible for modifying the
behaviors of a cell. These signaling events are mediated by in-
tracellular signaling proteins (enzymes for short) that relay the
signal into the cell by activating the next enzyme from inactive
state to active state on receipt of signal in the chain. Many of
the enzymes controlled by reactions such as phosphorylation
are themselves enzymes. In the enzymic cascades, an enzyme
activated by phosphorylation phosphorylates the next enzyme
in sequence, that is to say, an enzymic reactionis sequen-
tially connected by an enzyme activation reaction (called an
enzymic reaction elementhereafter). Therefore, for this funda-
mental mechanism of signaling pathways, the understanding
of the behaviors of each enzyme seems extremely important.
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Figure 4: The association between enzymic reaction elements
and elementary T-invariants mapping between the models and
the pathways with the example. (a) The mechanism of the
regulation of Ras activity. (b) The Petri net model of (a).

After modeling an enzymic reaction element according to
the method of representation explained above, it is easy to in-
terpret that an elementary T-invariant is exactly equivalent to
an enzymic reaction element mapping between the Petri net
models and the pathways (see Fig.4). The token’s presence
of the precedent enzyme place is importantly associated with
the firing possibility of successive enzyme place. In every el-
ementary T-invariant the precedent enzyme place acts as con-
trollers, reflecting the properties of enzymic reactions trans-
mitting the signals from the precedent steps to the next one of
signaling pathways. That is, elementary T-invariants will give
more precise understanding of structural properties of signal-
ing pathways.
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Figure 5: The chains obtained by applying proposed new ex-
tended algorithm with highlighting inhibition functions.



nucleus

TRESRE

Elk-1

SRF

SRF

MK2

MK2
P

Elk-1
P

Elk-
1

P

SRF

c-Jun
c-Fos

P P

c-
Ju

n

c-
FosP

P

AP-1

transcription

APRE

IL-6RE

NF-IL-6 NF-IL-6

NF-IL-6 NF-IL-6

NF-IL-6
NF-IL-6

NF-IL-6
NF-IL-6

c-fos

translation

IL-1

IL1RAcP

T
o

lli
p

IR
A

K
-1

TRAF6

M
yD

88
M

yD
88

IR
A

K
-4

PP

TAK1

IR
A

K
-1

TRAF6

P

P T
A

B
2

T
A

B
1

JNK

P

P

p38 JNKp38

MKK4,7MKK4,7

P

JNK

p38

P

MKK3,6

P P

MKK3,6

IL-1

TAK1TR
A

F6

P

TAB2
TAB1

P

Uev1A

Ubc13

U UU

P

CK II

CK II

P

P P

IL-6

g
p

1
3
0

g
p

1
3
0

IL
-6

R
IL

-6
R

IL-6

683

759

767

814

905
915

771

811

JAKs Shp-2

Shp-2

Hck

Shc

Shc
Grb2

Grb2

Sos-1

Sos-1

Sos-1

MEF-2C

MEF-2C

P P

gene products

gene products

c-Jun
c-Fos

Raf-1Raf-1

MEKMEK

ERKERK

P P

PP

P P

cell membrane

extracellular

cytosol

Ras-GDP

Ras-GTP

GTP

GDP

P

c-Jun

c-Fos

MEF-2C

P P

c-fos

c-jun

Elk-1
P

IL1RI

GAP

H2O

translationtranscription

Figure 6: Petri net models of various reaction types in signaling pathways.

3.2 New extended algorithm

Since elementary T-invariants express minimum periodic be-
haviors of Petri nets, an enzymic reaction element of signaling
pathways can be expressed by a subnet corresponding to an
elementary T-invariant. A chain consisting of enzymic reac-
tion elements can be identified by finding a series of subnets
from sink transition(s) as our consideration [10]. Still, there is
a problem that we have simply deleted inhibitor arcs to omit
the inhibition functions due to the difficulty of dealing with
enzymic reactions whose modeled nets include inhibitor arcs.
Therefore, we expand the proposed algorithm in order to han-
dle the inhibition functions and give a way of clarifying the
interactions of enzymic reaction elements in signaling path-
ways.

In the following, we are to give only the outline of our new
extended algorithm due to the space limitation of this paper:
step 1◦ To delete each inhibitor arc ei from Petri net model

and add one output transition ti to the place from which
the inhibitor arc was connected.

step 2◦ To rewrite the incidence matrix C for the transformed
model obtained in step 1◦.

step 3◦ To apply the previous proposed algorithm [10] to
get elementary T-invariants and chains of the subnets Nj

( j=1,2, · · ·), which correspond to the calculated elemen-
tary T-invariants, in the form of “N1←N2←N3←·· ·”,
“N1←Nj←·· ·” and so on as shown in Fig.5.

step 4◦ To calculate the elementary T-invariant Ji to get the
inhibition function subnet Ni by solving linear equation:
CJi=0 under the condition of Ji(ti)>0.

step 5◦ To add the inhibition function subnet Ni to the chains
obtained in step 3◦ by connecting subnet Ni to the corre-
sponding transition whose firing status can be restrained
by inhibitor arc ei as shown in Fig.5.
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Figure 7: Petri net models of various reaction types in signaling pathways.

In this way, all the enzymic reaction element chains existing
in signaling pathways can be naturally found out easily on ac-
count of the chains based on a series of subnets by calculating
all the elementary T-invariants [15] in Petri net models while
emphasizing the properties of each enzymic reaction element
with considering the origination leading to an occurrence of
inhibition functions.

3.3 An application to IL-1 and IL-6 pathways

This subsection gives an example possessing cross-talks with
suppressive effect between Interleukin-1 and Interleukin-6
(IL-1 and IL-6 for short) signaling pathways for demonstrating
the effectiveness of our improved method.

(1) IL-1 is a cytokine that primarily regulate inflamma-
tory and immune responses. Via its type I receptor it ac-

tivates specific protein kinases, including the NFκB induc-
ing kinase (NIK) and the mitogen-activated protein (MAP)
kinase cascade. These modulate a number of transcription
factors including NFκB, SRF and AP-1 that respond to
different signals in this pathways and regulate a variety of
complex promoters and enhancers to the inflammatory re-
sponse [16, 17, 18].

(2) IL-6 is also a cytokine that provokes a broad range of
cellular and physiological responses playing a role in inflam-
mation and hematopoiesis. An extracellular ligand activates
IL-6 signaling pathway by binding to a receptor composed of
an α subunit and gp130 shared in common with other cy-
tokines in the IL-6 family, and results in cellular events includ-
ing activation of JAK-STAT pathway and activation of Ras-
MAPK pathway [19].

There exist extremely complicated mechanisms of cross-



talks in the example signaling pathway of IL-1 and IL-6 as
shown in Fig.6. The upstream signal of either p38 from IL-
1 pathway or ERK from IL-6 pathway activates transcrip-
tion factors Elk-1 and NF-IL-6 that can act through its own
genome in the DNA [20, 21, 22]. There is only one inhibitory
interaction in example pathway that CKII activated by MAP
kinase cascade of IL-1 pathway can inhibit the activity of
transcription factor AP-1 through phosphorylation of c-Jun
which is a component of AP-1, as well as activate the SRF
stated in (1) [23, 24].

We remodel the signaling pathway illustrated in Fig.6 to
Petri net model by our proposed new modeling method based
on the formal representation rules in section 2 (see Fig.7). By
using our proposed algorithm in section 3.2, we can get all
subnet chains in the formation like Fig.5 based on calculat-
ing elementary T-invariants from sink transitions as well as
finding the the pathway leading to an occurrence of inhibi-
tion functions (the inhibition function to the activation func-
tion of AP-1 by CKII in this example). Finally, we can check
and rewrite the signaling pathway of biological system against
these subnet chains in Petri net model. Details are omitted
since the limitation of space.
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